EFFECTS OF VITAMIN D BINDING PROTEIN-DERIVED MACROPHAGE ACTIVATING FACTOR (GcMAF) ON HUMAN NEUROBLASTOMA CELLS AND PREDICTED MOLECULAR INTERACTION WITH THE VITAMIN D RECEPTOR

M. Ruggiero1,2, M.G. Fiore1, S. Magherini1, G. Morucci2, J.J.V. Branca2, M. Gulisano3, L. Thyer3, R. Smith1, E. Ward1, S. Pacini2
1Departments of Experimental and Clinical Biomedical Sciences and 2Experimental and Clinical Medicine, University of Firenze, Italy
3Macro Innovations Ltd, Cambridge, U.K.

Corresponding Author: Marco Ruggiero (marco.ruggiero@unifi.it)

Introduction 1
- From the historical perspective, the concept of immunotherapy of cancer is associated with the early work of Dr. William Coley.
- In modern times, it has been re-proposed since 1990.

Materials and Methods 2
- **Cell Lines**: Human neuroblastoma cell line SH-SY5Y, normally maintained in culture at 37°C in a humidified atmosphere of 5% CO2 in air. This cell line was obtained from the American Type Culture Collection (ATCC) and was used in a quiescent state for all the experiments.
- **GcMAF**: Commercially available, highly active purified GcMAF was obtained from Immuno Biotech Ltd, Guernsey, Channel Isles.
- **Experimental Design**: The central role of macrophages in the immunotherapy of cancer has been further highlighted in the article pasted below.

Discussion 3
- The central role of macrophages in the immunotherapy of cancer has been further highlighted in the article pasted below.

Results
- GcMAF treatment of SH-SY5Y cells resulted in different effects depending on the proliferative activity of the cells.
- GcMAF inhibited cell proliferation in a dose-dependent manner and induced morphological changes indicative of differentiation (Fig. 1).
- In serum-starved, quiescent cells, GcMAF induced morphological changes indicating differentiation (Fig. 2 A, B).
- The effects of GcMAF were mediated by cAMP production (Fig. 3), possibly through cross-talk with the vitamin D receptor (VDR).

Discussion 4
- The results presented here demonstrate that GcMAF induces actively proliferating human neuroblastoma cells, whereas it induces the differentiation of serum-starved (quiescent) human neuroblastoma cells.
- The concentration of GcMAF necessary to inhibit proliferation of actively proliferating cells was 10 fold higher than that required to induce differentiation of quiescent cells.

Discussion 5
- The results presented here demonstrate that GcMAF induces actively proliferating human neuroblastoma cells, whereas it induces the differentiation of serum-starved (quiescent) human neuroblastoma cells.
- The concentration of GcMAF necessary to inhibit proliferation of actively proliferating cells was 10 fold higher than that required to induce differentiation of quiescent cells.

Materials and Methods 2
- **Cell Lines**: Human neuroblastoma cell line SH-SY5Y, normally maintained in culture at 37°C in a humidified atmosphere of 5% CO2 in air. This cell line was obtained from the American Type Culture Collection (ATCC) and was used in a quiescent state for all the experiments.
- **GcMAF**: Commercially available, highly active purified GcMAF was obtained from Immuno Biotech Ltd, Guernsey, Channel Isles.
- **Experimental Design**: The central role of macrophages in the immunotherapy of cancer has been further highlighted in the article pasted below.

Discussion 3
- The central role of macrophages in the immunotherapy of cancer has been further highlighted in the article pasted below.

Results
- GcMAF treatment of SH-SY5Y cells resulted in different effects depending on the proliferative activity of the cells.
- GcMAF inhibited cell proliferation in a dose-dependent manner and induced morphological changes indicative of differentiation (Fig. 1).
- In serum-starved, quiescent cells, GcMAF induced morphological changes indicating differentiation (Fig. 2 A, B).
- The effects of GcMAF were mediated by cAMP production (Fig. 3), possibly through cross-talk with the vitamin D receptor (VDR).

Discussion 4
- The results presented here demonstrate that GcMAF induces actively proliferating human neuroblastoma cells, whereas it induces the differentiation of serum-starved (quiescent) human neuroblastoma cells.
- The concentration of GcMAF necessary to inhibit proliferation of actively proliferating cells was 10 fold higher than that required to induce differentiation of quiescent cells.

Discussion 5
- The results presented here demonstrate that GcMAF induces actively proliferating human neuroblastoma cells, whereas it induces the differentiation of serum-starved (quiescent) human neuroblastoma cells.
- The concentration of GcMAF necessary to inhibit proliferation of actively proliferating cells was 10 fold higher than that required to induce differentiation of quiescent cells.

Fig. 1. SH-SY5Y cells proliferation was stimulated by 10% and 1% FBS (Fig. 1A). GcMAF treatment of SH-SY5Y cells resulted in different effects depending on the proliferative activity of the cells. (A) A comparison with the proliferation of untreated cells: comparison between untreated cells, cells treated with compound at 50 ng/ml and cells treated with 10% and 1% FBS. (B) Comparison between untreated cells and GcMAF-treated cells, the proportion of cells in S phase of the cell cycle was determined by flow cytometry. (C) Comparison between untreated cells, cells treated with compound at 50 ng/ml and cells treated with 10% and 1% FBS. (D) Comparison between untreated cells, cells treated with compound at 50 ng/ml and cells treated with 10% and 1% FBS.

Fig. 2. GcMAF-induced cell differentiation in serum-starved SH-SY5Y cells. The interaction between GcMAF and VDR could also occur inside the cell. A molecular interaction between the two proteins can therefore be proposed (Fig. 4).

Fig. 3. According to this model, vitamin D and oleic acid should facilitate the interaction between GcMAF and VDR.

Fig. 4. Oleic acid, taken as an example of an unminated fatty acid bound to GcMAF, could stabilize the complex at the level of the plasma membrane.

Introduction 1
- From the historical perspective, the concept of immunotherapy of cancer is associated with the early work of Dr. William Coley.
- In modern times, it has been re-proposed since 1990.

Materials and Methods 2
- **Cell Lines**: Human neuroblastoma cell line SH-SY5Y, normally maintained in culture at 37°C in a humidified atmosphere of 5% CO2 in air. This cell line was obtained from the American Type Culture Collection (ATCC) and was used in a quiescent state for all the experiments.
- **GcMAF**: Commercially available, highly active purified GcMAF was obtained from Immuno Biotech Ltd, Guernsey, Channel Isles.
- **Experimental Design**: The central role of macrophages in the immunotherapy of cancer has been further highlighted in the article pasted below.

Discussion 3
- The central role of macrophages in the immunotherapy of cancer has been further highlighted in the article pasted below.

Results
- GcMAF treatment of SH-SY5Y cells resulted in different effects depending on the proliferative activity of the cells.
- GcMAF inhibited cell proliferation in a dose-dependent manner and induced morphological changes indicative of differentiation (Fig. 1).
- In serum-starved, quiescent cells, GcMAF induced morphological changes indicating differentiation (Fig. 2 A, B).
- The effects of GcMAF were mediated by cAMP production (Fig. 3), possibly through cross-talk with the vitamin D receptor (VDR).

Discussion 4
- The results presented here demonstrate that GcMAF induces actively proliferating human neuroblastoma cells, whereas it induces the differentiation of serum-starved (quiescent) human neuroblastoma cells.
- The concentration of GcMAF necessary to inhibit proliferation of actively proliferating cells was 10 fold higher than that required to induce differentiation of quiescent cells.

Discussion 5
- The results presented here demonstrate that GcMAF induces actively proliferating human neuroblastoma cells, whereas it induces the differentiation of serum-starved (quiescent) human neuroblastoma cells.
- The concentration of GcMAF necessary to inhibit proliferation of actively proliferating cells was 10 fold higher than that required to induce differentiation of quiescent cells.

Fig. 1. SH-SY5Y cells proliferation was stimulated by 10% and 1% FBS (Fig. 1A). GcMAF treatment of SH-SY5Y cells resulted in different effects depending on the proliferative activity of the cells. (A) A comparison with the proliferation of untreated cells: comparison between untreated cells, cells treated with compound at 50 ng/ml and cells treated with 10% and 1% FBS. (B) Comparison between untreated cells and GcMAF-treated cells, the proportion of cells in S phase of the cell cycle was determined by flow cytometry. (C) Comparison between untreated cells, cells treated with compound at 50 ng/ml and cells treated with 10% and 1% FBS. (D) Comparison between untreated cells, cells treated with compound at 50 ng/ml and cells treated with 10% and 1% FBS.

Fig. 2. GcMAF-induced cell differentiation in serum-starved SH-SY5Y cells. The interaction between GcMAF and VDR could also occur inside the cell. A molecular interaction between the two proteins can therefore be proposed (Fig. 4).

Fig. 3. According to this model, vitamin D and oleic acid should facilitate the interaction between GcMAF and VDR.

Fig. 4. Oleic acid, taken as an example of an unminated fatty acid bound to GcMAF, could stabilize the complex at the level of the plasma membrane.

Introduction 1
- From the historical perspective, the concept of immunotherapy of cancer is associated with the early work of Dr. William Coley.
- In modern times, it has been re-proposed since 1990.

Materials and Methods 2
- **Cell Lines**: Human neuroblastoma cell line SH-SY5Y, normally maintained in culture at 37°C in a humidified atmosphere of 5% CO2 in air. This cell line was obtained from the American Type Culture Collection (ATCC) and was used in a quiescent state for all the experiments.
- **GcMAF**: Commercially available, highly active purified GcMAF was obtained from Immuno Biotech Ltd, Guernsey, Channel Isles.
- **Experimental Design**: The central role of macrophages in the immunotherapy of cancer has been further highlighted in the article pasted below.

Discussion 3
- The central role of macrophages in the immunotherapy of cancer has been further highlighted in the article pasted below.

Results
- GcMAF treatment of SH-SY5Y cells resulted in different effects depending on the proliferative activity of the cells.
- GcMAF inhibited cell proliferation in a dose-dependent manner and induced morphological changes indicative of differentiation (Fig. 1).
- In serum-starved, quiescent cells, GcMAF induced morphological changes indicating differentiation (Fig. 2 A, B).
- The effects of GcMAF were mediated by cAMP production (Fig. 3), possibly through cross-talk with the vitamin D receptor (VDR).

Discussion 4
- The results presented here demonstrate that GcMAF induces actively proliferating human neuroblastoma cells, whereas it induces the differentiation of serum-starved (quiescent) human neuroblastoma cells.
- The concentration of GcMAF necessary to inhibit proliferation of actively proliferating cells was 10 fold higher than that required to induce differentiation of quiescent cells.

Discussion 5
- The results presented here demonstrate that GcMAF induces actively proliferating human neuroblastoma cells, whereas it induces the differentiation of serum-starved (quiescent) human neuroblastoma cells.
- The concentration of GcMAF necessary to inhibit proliferation of actively proliferating cells was 10 fold higher than that required to induce differentiation of quiescent cells.